luni, 28 mai 2012

FLUXUL MAGNETIC

Magnetic flux may be thought of as an amount of magnetic field passing through an area. The following diagram depicts a magnetic field directed away from the observer. A particular area of the field has been enclosed in a rectangle.




There are several ways of increasing magnetic flux. One way is to use a larger rectangle:
Or, another is to use a stronger field:
Magnetic flux therefore depends on field strength, B, and on area, A. Twice as much of either one gives you twice as much magnetic flux. Also, magnetic flux depends on the angle between B and A. The greatest amount of magnetic flux is when A and B are perpendicular.
Reducing the angle between A and B reduces the amount of field passing through the area. Therefore the magnitude of magnetic flux, φ, is
φ = BAsinø where ø is the angle between B and A.

Vezi și

  1. Schema de tratament pentru cazurile ușoare de Covid-19

  2. Romania traiește , încă ,  din inertia bogățiilor create in Epoca Comunistă

  3. Scara de valori a societății romanești 

  4. Europa privită din viitor

  5. Hrana vie

  6. Planurile in derulare sunt o munca in progres,  veche de sute de ani  

  7. Destinatii uimitoare pe glob

  8. Miracolul japonez- Drum reconstruit în patru zile

  9. Primarul care nu frură

  10. Duda a pus mâna pe Casa Regală

  11. Nu poti multiplica bogatia divizand-o !  

  12. Evolutia Laptop - Cântărea 5,44 kg

  13. O Nouă Republică

  14.    A fi patriot nu e un merit, e o datorie.! 

  15. În vremea monarhiei, taranii romani reprezentau 90% din populatie si nu aveau drept de vot.

  16. Miracolul din Noua Zeelandă - LYPRINOL

  17. Cea mai frumoasă scrisoare de dragoste

  18. Locul unde Cerul se uneste cu Pamantul

  19. Fii propriul tău nutriționist

  20. Maya ramane o civilizatie misterioasa

  21. Slăbești daca esti motivat

  22. Serbet de ciocolata

  23. Set medical Covid necesar acasă

  24. Medicament retras - folosit în diabet

  25. Brexit-ul - Spaima Europei

  26. Virusul Misterios

  27. Inamicul numărul unu al acumulatorilor 

  28. Sistemele solare - apă caldă

  29. Economisirea energiei electrice

  30.  Hoțul de cărți

  31. Aparitia starii de insolventa

  32. TRUMP ESTE PRESEDINTE

  33. Microbii din organismul uman

  34. Despre islamizarea Europei. O publicăm integral.  Și fără comentarii. 

  35. „Naţiunea este mai importantă ca Libertatea !”

  36. Masca ce omoară virusul     O veste de Covid  

  37. Primul an de viaţă - Alocatia pentru copil  

  38. Tavalugul Marelui Razboi - Globaliyarea - Asasinii Economici


PROBLEMS
(See below for answers)

1. What is the magnetic flux through a table top 1.5 m by .75 m inclined 70º to a magnetic field of 1.33 T?

ELECTROMAGNETIC INDUCTION AND FARADAY'S LAW

Whenever a conductor moves relative to a magnetic field, electric potential, and therefore current, is induced in the conductor. In more sophisticated language, electric potential is induced in a conductor whenever flux through the conductor changes. A simple generator is a conductor loop rotating in a magnetic field. All functional generators, no matter how large, are based on this concept. The average electric potential produced, regardless of how it is produced, is given by Faraday's Law: V = -NΔφ/Δt . Here N is the number of loops, Δφ is the change in flux, and Δt is the time required for the change. Notice that Δφ may arise out of one or a combination of ΔA, ΔB, or Δsinø.

PROBLEMS
(See below for answers)

2. A 500-turn armature (a rotating solenoid) with a cross-sectional area of 9 cm2 rotates at 120 rpm in a 4.00 T magnetic field. What is the average electric potential produced when the armature rotates from 0º to 90º to the field?

LENZ'S LAW

To determine the direction of the current produced when electric potential is induced, we use Lenz's Law: the induced current flows in a direction that opposes the change that induced the current. This is more easily understood through an example.

In the following example the permanent magnet moves to the left. What is the direction of the current through the resistor?
The movement of the north end of the permanent magnet away from the solenoid induces electric potential in the solenoid.
The movement of the north end of the permanent magnet away from the solenoid induces electric potential in the solenoid. To oppose the motion of the magnet, the left end of the solenoid becomes south, attracting the magnet. The attraction is not strong enough to prevent the movement; it just offers resistance to the movement.
Using the right hand rule for solenoids, we point the thumb of the right hand along the direction of the field through the solenoid (ie. to the right).
Using the right hand rule for solenoids, we point the thumb of the right hand along the direction of the field through the solenoid (ie. to the right). When we "grab" the solenoid with our right hand, the fingers curl upward behind the solenoid and come over top the solenoid and down in front of the solenoid. This is the direction of conventional current flow through the solenoid. (For electron flow use the left hand.) Since the current flows downwards in front of the solenoid, it must travel to the right through the resistor.
PROBLEMS
(See below for answers)

3. In the diagram below, the conductor loop falls down into a magnetic field directed toward the observer (out of the page). What is the direction of conventional current induced in the loop?
4. In the following diagram a conducting loop falls toward a section of conductor carrying conventional current to the right. In what direction does conventional current flow through the loop?
5. In the diagram below a conducting loop moves to the left above a conductor carrying conventional current to the right. What direction does conventional current flow through loop?
6. The diagram below depicts a conducting loop falling straight down through a uniform magnetic field directed toward the observer. What direction does conventional current flow through loop?

SELF -INDUCTANCE
As long as the current through a loop does not change, B is constant and flux is constant.
However, if current increases or decreases, B changes, and a change in flux is produced. The change in flux is a source of electric potential in the circuit that opposes the original current. This opposing electric potential is called "back-emf." Back-emf reduces the power in the circuit by reducing the current. This power loss can occur in any circuit where there is a change in flux. Back-emf is common in AC circuits and is particularly important in any situation involving motors or generators.

PROBLEMS
(See below for answers)

7. Why would an electric motor burn out when it is not turning if it does not burn out while it is turning?

MUTUAL INDUCTANCE AND TRANSFORMERS

Transformers make use of mutual inductance. In this process the changing magnetic field produced by the "primary" coil induces electric potential in the "secondary" coil. The primary coil is the one attached to an alternating current power source. An alternating current ("AC") increases then decreases in one direction then reverses, increasing then decreasing in that direction. The changing current creates a changing magnetic field. The changing magnetic field induces electric potential in the nearby secondary coil, which is attached to a load.
Every one who lives in a developed country depends on transformers. Transformers "step down" high voltage power delivered from hydro dams or other far away generators to 240 V delivered to the house. Other devices such as televisions and computer monitors use transformers to step up voltage from the 120 V wall outlets supply to the 2500 V needed by CRT's (television tubes).

Whether the voltage is stepped up or down and by how much depends on the relative number of turns on the two coils. The basis of this wizardry is the Law of Conservation of Energy. Power in an electric circuit is directly proportional to current and voltage:
P = IV .
Ideally the power developed in the secondary coil would be the same as developed in the primary:
Pp = Ps .

Ignoring the heat loss that occurs we will take this as an accurate statement: therefore,
IpVp = IsVs.

Rearranging this equality we are able to compare the relative voltages and currents in the primary and secondary coils:
Ip/Is = Vs/Vp .

What this last equality is saying is that you don't get something for nothing. If you use a transformer to double the voltage, you only get half the current. At best, ignoring heat losses, you get the same power from the secondary as delivered to the primary.

As indicated by Faraday's law, the electric potential induced is directly proportional to the number of loops or
turns in the coil. Therefore,
Ns/Np = Vs/Vp = Ip/Is .

In functioning transformers, hundreds or thousands of turns are used. The transformer depicted above has

Np = 4 and Ns = 2. Therefore 
Ns/Np = Vs/Vp = 0.5


Therefore, if 120 V was delivered to the primary coil,
0.5 = Vs/(120 V)

the voltage delivered to the load in the secondary coil would be
Vs = 60 V. This would be a step-down transformer.
If the source delivered 2 A of current to the primary coil (Ip = 2 A) then

Ns/Np = Ip/Is and

0.5 = (2 A)/Is and

Is = 4 A .

(At best we get half the voltage; twice the current. Nothing gained; nothing lost.)

PROBLEMS
(See below for answers)

8. A transformer is used to change a 120 V, 3 A current to 2500 V.
a. What kind of transformer is this?
b. What is the ratio of secondary turns to primary turns?
c. What current would be developed in the secondary coil?
9. A step-up transformer has 100 turns on the primary coil and 500 turns on the secondary coil. If this transformer is to produce an output of 4300 V with a 12 mA current, what input current and voltage are needed?
10. The average emf induced in the secondary coil is 0.12 when the current in the primary coil changes from 3.4 to 1.6 A in 0.14 s. What is the mutual inductance of the coils?
11. A circular coil with 233 turns and a diameter of 23.5 cm rotates about a vertical axis at 1250 rpm. The coil is situated in a magnetic field having a horizontal component of 3.80x10-5 T, and a vertical component of 2.85 x10-5 T. What is the maximum EMF produced in the coil?
12. The current in an air-core solenoid is reduced from 3.99 A to zero over 5.9s. The solenoid has 2000 turns per meter and a cross-sectional area of 0.131 m2. Surrounding the solenoid near the center of its length is a second coil of 50 turns.
a. What is the magnitude of the induced emf in the second coil?
b. If the resistance of the second coil is 0.00409 ohm what is the induced current?
13. A 200-turn air-core solenoid with a cross-sectional area of 100 cm2 has a resistance of 5.0 ohms.  The ends of the wire are joined together to close the circuit.  A 1.1 T magnetic field is directed through the coil perpendicular to its cross-sectional area.  Over a period of 0.1s, the field is reversed.  What average current flows through the coil during that period?
14. If the blade of an electric lawn mower jams and prevents the motor shaft from rotating, the electric motor can burn out. Explain why this happens.


ANSWERS
1. φ = BAsinø = (1.33 T)(1.5 x .75 m2)sin70º = 0.937 Wb (Webers)
2. N = 500
Δt = (0.25 rotation)(1 minute/120 rotations)(60 seconds/minute) = 0.125 s
Δφ = BA(sinøf - sinøi)

= (4.00 T)(9.00 x 10-4 m2)(sin 90º - sin 0º) = 3.6 x 10-3 Wb
V = -NΔφ/Δt = -(500 turns)(3.6 x 10-3 Wb)/(0.125 s) = -14.4 V



Măsurarea energiei electrice

Energia electrica la domiciliu Calculul energiei electrice active, kWh



Energia electrica(E) e una, puterea electrica(P) e alta, iar timpul(T) curge in contul Electrica S.A. ; un feon de putere medie(1000W) consuma, pt. o tunsoare scurta, intr-un sfert de ora de functionare, 250Wh(watt-ora) de energie electrica activa sau exact un kW(kilowatt, o mie de wati) de putere intr-o ora, adica un kWh(kilowatt-ora). Energhia este

E(kWh) = P(kW) x T(h) (nr. kilowatilor multiplicati cu nr. orelor)

Analog, o masina de spalat de 2500W iti scoate din buzunar, in doua ore de
functionare, echivalentul a 5kWh, iar o lustra cu 5 becuri(300W in total),
pentru o noapte de dezmat(8 ore), te costa cat 2,4kWh.

Daca ai suficient timp si destula rabdare obtii consumul aproximativ, zilnic
si lunar, pt. fiecare dintre consumatorii electrici din casa, apoi consumul
general ce ar trebui sa semene cu indicatia contorului electric si sa
corespunda, cat de cat, cu valoarea facturii la energie electrica;
sau poti calcula factura asa cum dicteaza Electrica S.A. :
Sursa http://www.garajuluimike.ro



Circuitele integrate din familia AD775x, folosite pentru măsurarea energiei electrice, admit ca intrări tensiunea şi curentul din reţeaua electrică locală şi le convertesc prin intermediul unor convertoare A/D în semnale digitale. Un procesor de semnale digitale dedicat (DSP) prelucrează aceste două semnale, rezultatul obţinut fiind proporţional cu puterea instantanee.



Figura 1

Condiţiile impuse la intrare, modul în care se realizează filtrarea, procesarea ulterioară precum şi alte caracteristici, sunt specifice fiecărui tip de integrat din familia AD775x, obţinând astfel soluţii compatibile sistemului, acolo unde sunt aplicate.

De exemplu, integratul AD7750 (figura 1), filtrează printr-un filtru trece-jos semnalul obţinut la ieşirea din DSP, apoi realizează o conversie în frecvenţă pentru a genera la două din terminalele de ieşire pulsuri proporţionale cu puterea reală instantanee şi în plus, o ieşire de înaltă frecvenţă convenabilă pentru procesul de calibrare şi testare.

Utilizatorii energiei electrice ca şi majoritatea întreprinderilor industriale, s-au familiarizat din ce în ce mai mult cu echipamentele electronice performante. Se preconizează o creştere rapidă a ratei de înlocuire a mult utilizatelor contoare electromecanice cu dispozitive de măsură electronice, datorată pe de o parte procesului de descentralizare în anumite ţări, iar pe de altă parte cererii pieţei. Atât producătorii de energie electrică cât şi consumatorii pot obţine beneficii semnificative utilizând dispozitive de măsurare electronice.

Un contor tipic converteşte semnalele analogice admise la intrare - tensiune, curent - în semnale digitale, iar în urma proceselor de prelucrare a acestora, la ieşire se poate obţine energia reală instantanee, energia reactivă sau energia activă.

Serviciile către utilizatori sunt substanţial îmbunătăţite prin citirea automată şi de la distanţă a consumurilor precum şi administrarea eficace a acestora. În afară de note de plată mult mai credibile şi uşor de verificat, consumatorii beneficiază de siguranţă crescută în sistemul de distribuţie al energiei - căderile de tensiune pot fi detectate, identificate şi corectate mult mai repede.

Contoarele electronice pot măsura energia cu precizie mare independent de defazajul fazelor sau de distorsiunea semnalelor datorată unor încărcări neliniare.

Contoarele electromecanice nu pot măsura precis energia dacă în reţeaua de distribuţie sunt realizate scheme de reglare a încărcărilor pe o anumită fază, în schimb, dispozitivele electronice sunt robuste şi precise chiar şi în aceste condiţii. Deşi contoarele electronice sunt superioare contoarelor electromecanice din punct de vedere al funcţionalităţii şi al performanţelor, preţul de cost nu este accesibil pentru majoritatea consumatorilor.

Pătrunderea în acest domeniu a unor companii, precum Analog Devices, cu o excelentă reputaţie în aprovizionarea cu circuite integrate a unor unităţi din domenii de vârf - aerospaţial, militar - garantează realizarea unor produse electronice cu fiabilitate mare şi preţuri scăzute, mult aşteptate de marii consumatori.

Recunoscând faptul că preţul unui contor constituie un factor important în acceptarea acestuia pe piaţă, firma Analog Device sprijină constructorii de contoare să întâmpine cererea tot mai mare de produse performante.

Principala preocupare a companiilor de furnizare şi distribuţie a energiei electrice este dezvoltarea de noi facilităţi cum ar fi citirea automată a contoarelor, carduri de plată şi mai ales măsurarea precisă şi sigură a energiei active şi a energiei reactive.

Folosirea echipamentelor electronice asigură reducerea investiţiilor, creşte precizia măsurării şi calitatea produsului obţinând astfel beneficii superioare utilizării contoarelor tradiţionale.


Procesoare de semnale digitale (DSP) şi microcontrolere

În primele încercări de realizare a echipamentelor electronice de măsurare a energiei electrice, puterea se determina prin multiplicarea semnalelor analogice - tensiune, curent - dar rezultatele obţinute nu au fost pe măsura aşteptărilor.

La dispozitivele electronice, caracteristici importante precum stabilitatea, liniaritatea şi mai ales precizia de măsurare au fost substanţial îmbunătăţite prin determinarea şi corectarea rapidă a erorilor (inerente calculelor digitale). Utilizarea acestor facilităţi a fost factorul primordial în noua eră a industriei telecomunicaţiilor, iar acum au deschis drumul către domeniul măsurării energiei electrice.

Produsele care includ procesoare de semnale digitale transformă semnalele analogice (tensiune, curent) în semnale digitale prin intermediul unor convertoare A/D integrate.

Procesarea semnalelor digitale permite efectuarea unor calcule precise şi constante în timp fără a fi influenţate de variaţiile mediului ambiant.

Cu toate că procesoarele de semnale digitale programabile sunt departe de a fi disponibile la preţuri reduse, cea mai bună soluţie în realizarea unor dispozitive de măsură fiabile, implică utilizarea unui DSP dedicat având convertorul A/D integrat şi a unui microcontroler - care execută toate acţiunile programate şi efectuează calcule simple necesare afişării. Procesorul converteşte semnalele analogice în semnale digitale, eşantionează şi calculează continuu puterea instantanee şi puterea medie.

De exemplu, pe parcursul ultimilor ani, diferiţi proiectanţi au realizat contoare folosind microprocesoare pe 4 biţi la frecvenţa de 4MHz.

Astfel de microcontrolere pot fi utilizate numai în anumite configuraţii şi sunt folosite pentru efectuarea unor anumite funcţii cum ar fi: demodularea şi cifrarea datelor, determinarea perioadelor de facturare şi administrarea eficientă a distribuţiei de energie (detectarea căderilor de tensiune, deconectare de la distanţă, scheme de optimizare a consumurilor pe o anumită fază).

Microprocesoarele permit consumatorilor să-şi aleagă nivelul dorit de servicii, iar compania de distribuţie a energiei poate configura de la distanţă contorul.


Produse standard

Creşterea familiei de produse standard proiectate pentru măsurarea energiei nu numai că elimină investiţiile mari asociate producţiei contoarelor electromecanice, dar reduce semnificativ numărul de componente necesare realizării de aplicaţii specifice. Produsele standard încorporează componente ce oferă soluţii pentru rezolvarea unor probleme comune ale diferiţilor consumatori, la preţuri accesibile.

Precizia de măsurare, echipamentele şi programele necesare, costurile de dezvoltare, timpul necesar pătrunderii pe piaţă şi uşurinţa implementării în sistem sunt principalii factori luaţi în considerare de constructorii de contoare electronice atunci când urmăresc optimizarea preţurilor de cost efective ale sistemelor de măsurare. Alte soluţii cum ar fi afişoarele cu LED-uri sau cristale lichide necesită circuite de comandă suplimentare.

În tabelul de mai jos este prezentată familia de procesoare de semnale digitale ale firmei Analog Devices (alegerea unui procesor din această familie depinde de tipul de sistem în care acesta este implementat).

AD7750, primul din această familie, este proiectat pentru comanda directă a unui numărător cu motor pas cu pas care determină energia prin integrarea puterii. Din punct de vedere al preţului de cost, numărătorul cu motor pas cu pas este accesibil, deci se poate construi un contor ieftin prin această metodă. Dacă apar căderi de tensiune, contorul se opreşte. O altă soluţie cum ar fi afişarea pe LED-uri sau LCD, necesită circuite electronice de numărare pe mai multe etaje, cu memorarea ultimei valori înregistrate.

Următoarea serie de produse are interfaţă serială pentru comunicaţia bidirecţională cu un microprocesor. Preţul de cost al acestei serii este în primul rând influenţat de preţul sursei de alimentare de preţul transformatorului de curent şi al oscilatorului şi a circuitului de calibrare externă.

O colaborare strânsă între constructori şi utilizatori a condus la realizarea de dispozitive integrate de calitate superioară, multifuncţionale şi la preţuri accesibile. AD7750 conţine 2 convertoare A/D de 16 biţi şi un procesor de semnale pentru determinarea energiei electrice. Cu excepţia circuitului de intrare în convertorul A/D şi a circuitului de referinţă, toate celelalte semnale sunt procesate digital.

Această abordare permite obţinerea unei precizii de măsurare superioare şi stabilitate în timp independent de condiţiile de exploatare.

Convertoarele A/D funcţionează la o rată de supraeşantionare de 900kHz.

Canalul de curent are un domeniu de intrare larg, amplificare programabilă, facilitând conectarea directă la diferite tipuri de traductoare tensiune-curent care uzual au tensiunea de ieşire mică.

Puterea reală este calculată din semnalul de putere instantanee obţinut din procesarea semnalelor de tensiune şi curent. Filtrul trece-sus este introdus pe canalul de curent, după convertorul A/D pentru a elimina orice influenţă a componentei de curent continuu. Filtrul trece-jos reduce armonicele frecvenţei de linie şi extrage puterea reală.

Această metodă de calcul a puterii reale este foarte precisă, nu generează erori chiar dacă formele de undă ale semnalelor de tensiune şi curent nu sunt sinusiodale şi nu depinde de factorul de putere. Procesarea semnalelor digitale (multiplicare, filtrare) asigură stabilitate mare cu temperatura şi în timp.

Integratul conţine de asemenea, două convertoare D/F (digital/frecvenţă) care generează la două terminale de ieşire frecvenţă joasă, iar la un al treilea terminal pulsuri de înaltă frecvenţă.

Domeniul de ieşire în frecvenţă poate fi selectat de producător, acestă facilitate permiţând utilizarea acestuia în construcţia diferitelor contoare.

Semnalul obţinut la ieşirea de joasă frecvenţă este proporţional cu puterea medie reală, iar semnalul obţinut la ieşirea de frecvenţă mare este proporţional cu puterea reală instantanee.

AD7751 este un integrat folosit în dispozitivele de măsurare a energiei electrice din sistemele monofazate.

Măsurătorile efectuate cu astfel de dispozitive sunt foarte precise deoarece AD7751 are integrată o schemă de detectare a erorilor ce pot apare în sistem. Dacă apar avarii sau căderi de tensiune în sistem, utilizatorul poate depista rapid locul unde s-au produs şi deci acestea pot fi remediate rapid, energia contorizată fiind energia reală consumată.

AD7755 este similar integratului AD7751, în plus acesta poate fi folosit şi în sistemele trifazate.

Ing. Dan Ioan Negru  e-mail: d.negru@topex.ro
Traducere după “Analog Dialog” Top 9+ ELECTRONICS SYSTEMS
Tel: 01/232.04.24 Fax: 01/232.31.56

Contor electronic


AD7751 este un circuit integrat folosit la realizarea dispozitivelor de măsură a energiei electrice.

Acesta are trei canale de intrare, două de curent şi unul de tensiune, pe fiecare canal existând convertoare A/D corespunzătoare.

Procesarea semnalelor se realizează în domeniul digital obţinându-se puterea reală. Pentru a determina şi afişa energia în kWh se utilizează un numărător cu motor pas cu pas.

Îeşirea de înaltă frecvenţă furnizează puterea reală instantane, această ieşire se utilizează în operaţia de calibrare a dispozitivului şi permite de asemenea, comunicarea cu un microprocesor.

Mod de prezentare: capsule 24-DIP, şi 24-SSOP.  Condiţii de lucru: -45°C ...+85°C

Vezi și

  1. Schema de tratament pentru cazurile ușoare de Covid-19

  2. Romania traiește , încă ,  din inertia bogățiilor create in Epoca Comunistă

  3. Scara de valori a societății romanești 

  4. Europa privită din viitor

  5. Hrana vie

  6. Planurile in derulare sunt o munca in progres,  veche de sute de ani  

  7. Destinatii uimitoare pe glob

  8. Miracolul japonez- Drum reconstruit în patru zile

  9. Primarul care nu frură

  10. Duda a pus mâna pe Casa Regală

  11. Nu poti multiplica bogatia divizand-o !  

  12. Evolutia Laptop - Cântărea 5,44 kg

  13. O Nouă Republică

  14.    A fi patriot nu e un merit, e o datorie.! 

  15. În vremea monarhiei, taranii romani reprezentau 90% din populatie si nu aveau drept de vot.

  16. Miracolul din Noua Zeelandă - LYPRINOL

  17. Cea mai frumoasă scrisoare de dragoste

  18. Locul unde Cerul se uneste cu Pamantul

  19. Fii propriul tău nutriționist

  20. Maya ramane o civilizatie misterioasa

  21. Slăbești daca esti motivat

  22. Serbet de ciocolata

  23. Set medical Covid necesar acasă

  24. Medicament retras - folosit în diabet

  25. Brexit-ul - Spaima Europei

  26. Virusul Misterios

  27. Inamicul numărul unu al acumulatorilor 

  28. Sistemele solare - apă caldă

  29. Economisirea energiei electrice

  30.  Hoțul de cărți

  31. Aparitia starii de insolventa

  32. TRUMP ESTE PRESEDINTE

  33. Microbii din organismul uman

  34. Despre islamizarea Europei. O publicăm integral.  Și fără comentarii. 

  35. „Naţiunea este mai importantă ca Libertatea !”

  36. Masca ce omoară virusul     O veste de Covid  

  37. Primul an de viaţă - Alocatia pentru copil  

  38. Tavalugul Marelui Razboi - Globaliyarea - Asasinii Economici

Măsurarea energiei electrice şi a puterii 
cu dispozitive integrate electronice